Developing Better Pilots, Faster

Singapore September 3rd, 2019

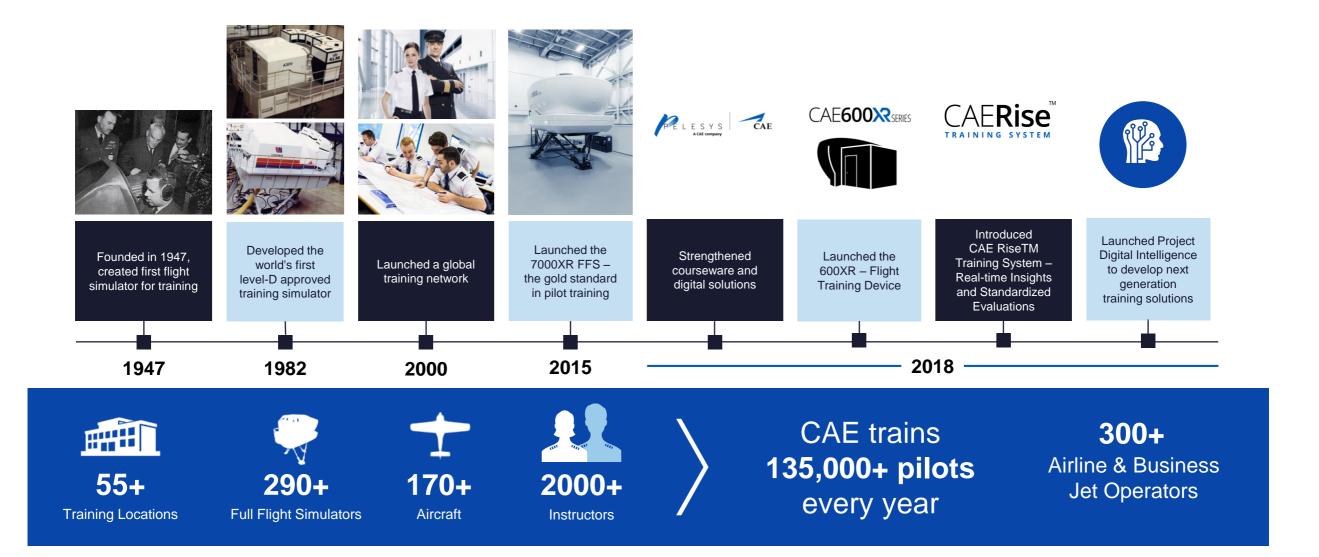
Capt. Chris Ranganathan,

Senior Director, Training Strategy & Services

CAE

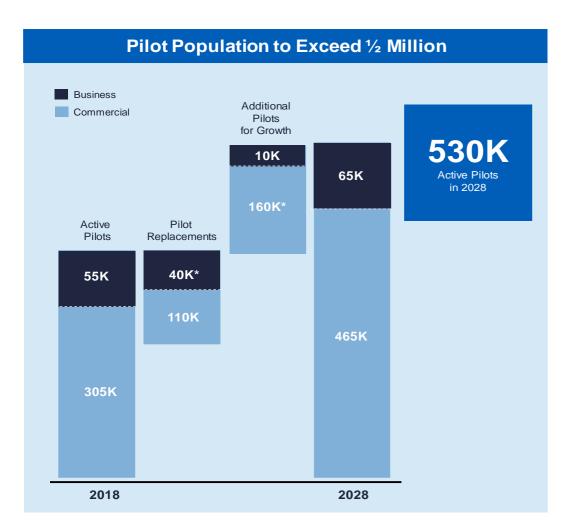
Your worldwide training partner of choice

Our vision statement guides everything we do



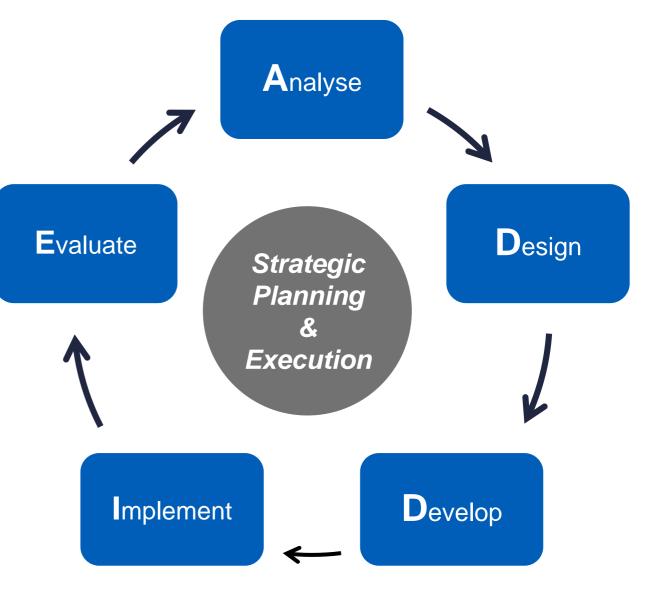
Our vision is to be the recognized global training partner of choice

to enhance safety, efficiency and readiness.



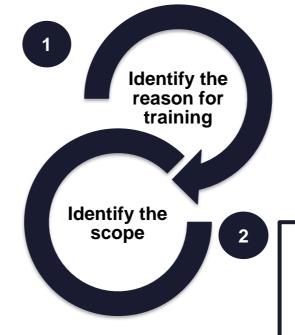
CAE – 70+ years of training innovation

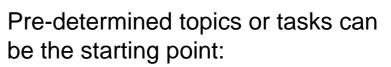
10-year pilot demand outlook



*Including a net 20K business jet pilots movement to airlines To read CAE's Airline and Business Jet Pilot Demand Outlook: Update see <u>cae.com/civil</u>

Developing Better Pilots, Faster – requires adaptive programs


- Program development and execution are supported by quality processes that ensure alignment with our vision
- Evidence of alignment is captured from sources that are:
 - internal to the CAE training organisation,
 - from the customer's organisation, and
 - from the wider industry.



Needs Analysis results in a specification of what must be trained,

- A new task / role
- A new aircraft type or variant
- A change to an existing task / role
- A new or changed regulation
- Identification of an operational risk
- Training evaluation process identifies an area for improvement in existing training

- Appendix 9 (EASA) or equivalent
- OSD/FSB report
 - ODR Tables, TASE
- Safety bulletin
- Training gaps identified by a Risk Analysis

Needs Analysis results in a specification of what must be trained, to what standard

The task / role being analysed is broken down into goals, tasks and/or sub-tasks.

To determine their absolute and relative priority, each task is subject to a:

- Difficulty, Importance, Frequency analysis
- Trainee Population analysis
- Training Criticality Analysis

To aid in the subsequent program design, each task and/or subtask is tagged with:

- The most relevant competencies,
- The required Knowledge, Skill and Attitude (as applicable)
- Any defined/regulated standard of performance required

Needs Analysis results in a specification of what must be trained, to what standard and using what medium

Different training methods and tools can be used :

Identify the reason for training

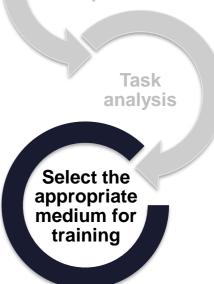
Identify the scope

Pre-course Training preparation and management

Ground school training

CAESimfinity Referse Virtual Simulator (VSIM)

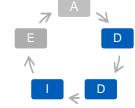
- Maestro suite
- Instructor Toolbox


Flight training devices (FTD)

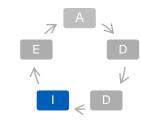
CAE**400** Series

CAE**600** series

Full-flight simulators (FFS)

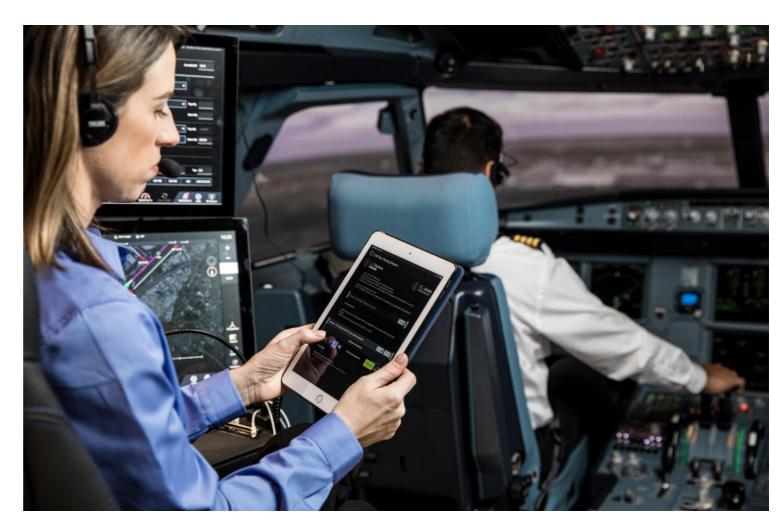

CAE**7000** Series

ODR tables may define training/checking methods & tools.

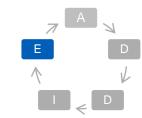


Learning objectives are constructed in the Design phase, allocated to training events and guide courseware Development

CAE Rise[™] training system launched in 2018



What is CAE Rise?


- Real-time Insights that assist Standardised Evaluation
- Customer SOPs
- De-briefing tool
- Training Data Analytics

All enabled through a simple digital delivery platform

Sources of data for training programs evaluation

Learning

Organizational Outcomes Telemetry Data from Simulator

External Sources

Crew Survey reviews

Trainee

Feedback

Safety Investigations

Occurrence reports

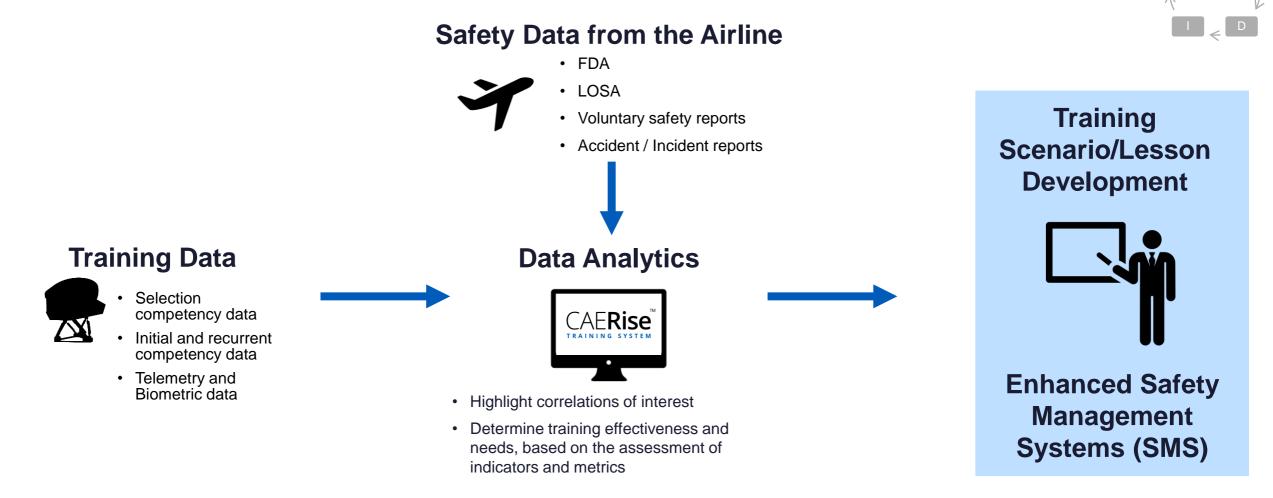
FDA

LOSA

In-house research

Academic review Accident / Incident data review

Data Analytics dashboards and reports


Monthly training	-			CAE					
What skills could be imp	proved in our train	ning program?							
Centerline deviation				356					
Airspeed			305						
Thrust handling			265						
anding gear retraction		108							
Stick handling	89								
-									
Flaps setting	••• C & mpc. www.caecom		x Deetitioard CAE x						2
What maneuvers are	E Power Bl								
	Location ^	🔀 AirlineOne		All Maneuvres - Air	line Head of Tra	inina			CAE
Take-off engine failure b		Annieone		All Mulleuvies All		ming			CAE
Engin		Al Takeet	Cruise Apprilland.						
	Aircraft Type	Grade Distribution		Average Instructur 🛛 🗐 GAE Rise	Trends - Numbers of M	aneuvres for Each Gr	rade (Instructor Gra	ading)	
Landing with one		100		Average Parkets 🔄 CAE Kise	35 36			Tal. Beov	Pies A3348
T 1 G 1 G 1	Training Type	50			25	~			1
Take-off engine fire b		40		1	25	20		-	
Ot		20		1	10		0		-
04					1				
			2 3	£.	Al-Dec 2013	Jan-Jun 2014	Ad-Dec 2014	Jan-Jun 2015	Jul-Dec 2015
What competencies are		Most Frequently Graded By Instructo		aneuvres Distribution	ige () Absolute				
		Reacted calest?		verage instructor Grading		CAE Rise Grad	ing		
Application		Laniro (47 a		ndry CAT 8		Landing GAT 8			
		Lastra CA 1		eding CAT I		Landing CA at a	ew Randard		
Aircraft flight path manage		LastrgCATI	34	inited taken? militing CAT 8		Thejected takes IT Londing CAT 8			
Situati		Most Frequently Retried		nding CAT I		Landing CAT 1			
Situati		Take off lateral wind		jected takanty		Rejected Second			_
rcraft flight path managemer		Landing - One engine INOP		ndispCAT 8		Landing CAT I			-
oran night paar managorio.		Ge Around				-			
Workload		Rejected Takeoff Engine Pailure		ndhg CAT 8		Londing CAT 8			
		Labig Go II		extrag CAT (Londay CAT1			
C									
			npetencies Assessments	Maneuvres (All) Maneuvres (1	Single) Scorecards				
Problem solving and de	cision making	3 • G	io-around - One eng	gine					
		in	operative						

- Standardized dashboards and reports for different stakeholders
- Macro data (airline level) trends
- Micro data (individual level) trends
- Ability to benchmark internally and vs. the industry
- Outlier analysis to improve instructor standardization
- Integration of flight and training data to adapt your training program; fully addressing trends in normal and abnormal operations

Data driven training decisions

CAE Rise[™] data unlocks new capabilities

Data enables the development of efficient and effective pilot training programs

How will the use of data evolve pilot training?

Individual Based Training

 Correlation of a formance data with relevant de nographic data, can identify traising needs by relevant segments.

Generation of aircraft

training scenario design based on behavioural indicators of relevance to that pilot.

Operator Benchmarking

- Gathering outain house than one oral will able benchm
 - How does your fleet compare with other operators?
 - Generation of pilots
 training risks for mixed-fleet
 operations?

Industry Collaboration on Training Data

- We can gather cuntains of training data by re need to work together to the bis to improved safety and efficiency:
 - in Individual pilots technology solutions people
- Data acquisition and ownership
- Data integrity, security, privacy and compliance

Data driven training analysis and design, develops better pilots, faster

Your worldwide training partner of choice

