

Experiences of FSTD Envelope Expansion Using Non-OEM Models

David R. Gingras, FRAeS

"Exemplar" Models

For the purposes of stall maneuver evaluation, the term "exemplar" is defined as a level of fidelity that is type specific of the simulated airplane to the extent that the training objectives can be satisfactorily accomplished.

-14 CFR Part 60

Background

Extended envelope training must include instructor-guided hands on experience of recovery from full stall and stick pusher activation, if equipped

- 14 CFR 121.423 5c

Public Law 111-216

2010

2014 2016

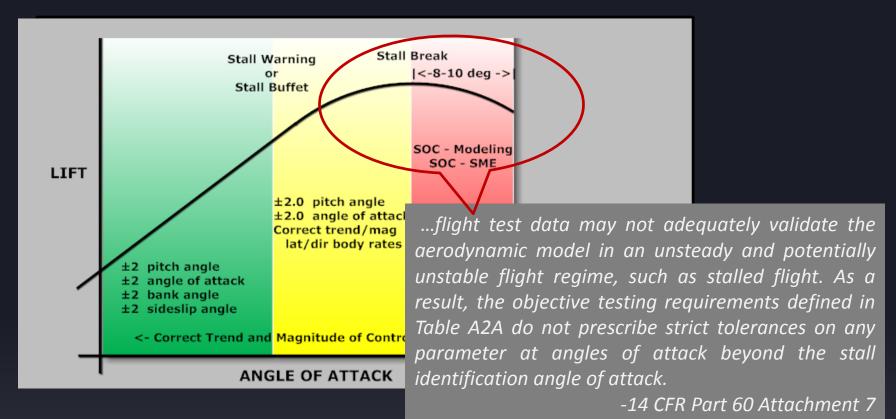
14 CFR Part 60 Change 2/Directive 2 released in with new qualification requirements that include full-stall modeling for Level C and D

MAR2019

12

Task at Hand ...

- Over 300 training devices must be enhanced to be qualified for Full-Stall Recovery Training under Directive 2 in the USA.
 - Hundreds more world-wide
- Devices to be updated vary:
 - Airplane Type
 - Over 30 Types
 - Simulator Vintage
 - 1980's to Present



Requirements

- Full-Stall Modeling...as appropriate to the aircraft type
 - Degradation in static/dynamic stability
 - Degradation in control response
 - Stall Hysteresis
 - Uncommanded roll response
 - Apparent randomness or non-repeatability
 - Mach effects
 - Stall buffet
- Modeling must extend 10 degrees past critical angle of attack
- Statement of Compliance Required

Requirements

Data Sources

In cases where it is impractical to develop and validate a stall model with flight-test data (e.g., due to safety concerns involving the collection of flight test data past a certain angle of attack), the data provider is expected to make a reasonable attempt to develop a stall model through the required angle of attack range using analytical methods and empirical data (e.g., wind-tunnel data)

-14 CFR Part 60 Attachment 7

Evaluation

- Subject Matter Expert (SME) Evaluation
 - Type Rating/Qualification in Aircraft being Simulated
 - Direct experience in conducting stall maneuvers in the same type rating
 - Must be familiar with intended stall training maneuvers
- Statement of Compliance Required

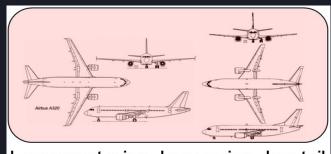
In Practice

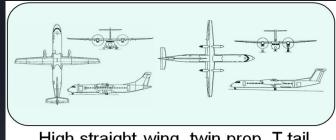
- Instances where analytical/empirical typeexemplar models become needed
 - Out of production airplanes
 - Little or no OEM available data
 - In productions airplanes
 - No OEM data/models are available
 - OEM data/model are cost prohibitive
 - Can be true for older/version limited simulators

Exemplar Stall Model Development

- Techniques for high-angle-of-attack models for simulation and training have been in development for over 30 years
 - Primarily for high-maneuverable military aircraft

Exemplar Stall Model Development


- Recent US Navy and FAA sponsored research
 - Analytical/empirical techniques developed for highly maneuverable aircraft are suitable for development of transport category stall/post-stall models
 - Geometrically similar aircraft generally have similar stall and post-stall stability and control trends

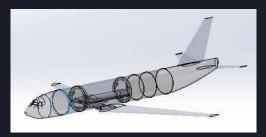

Wind Tunnel Testing Approach

- Representative geometry types identified
 - Low swept wing, low engine, low tail
 - Most Boeing and Airbus, 737, A320, 767, A330, etc.
 - Low swept wing, aft engine T-tail
 - CRJ 900, ERJ145, DC-9, F-28, etc.
 - High straight wing, T-Tail
 - Q-400, ATR-42, ATR-72, etc.
 - Low straight wing, T-Tail
 - Beech 1900, PC-21, etc.
 - Low straight wing, low tail
 - Saab 340, etc.

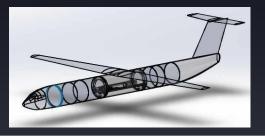
10 discrete configurations were examined, with static and dynamic data collected α to

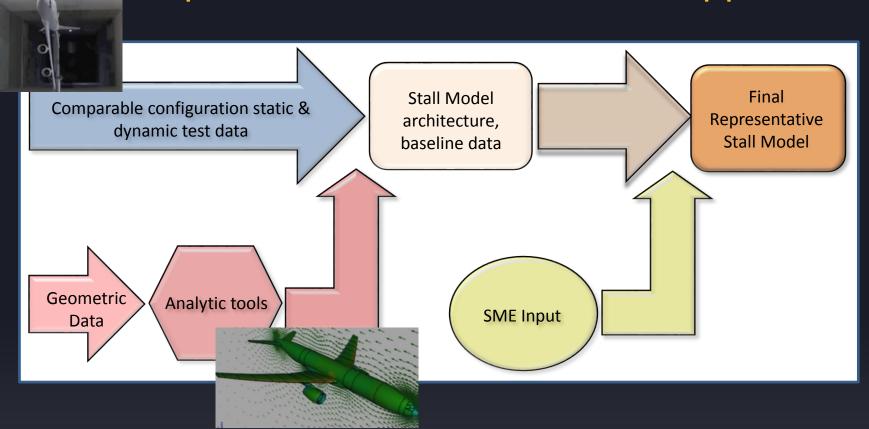
Low swept wing, low engine, low tail

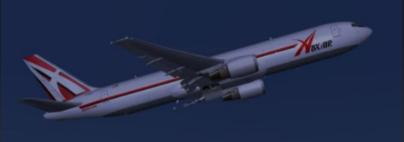
High straight wing, twin prop, T tail



Wind Tunnel Model Adaptation






Representative Model General Approach

Example – ABX Air 767-200

- ABX-Air 767-200
 - Level C FFS circa 1997 with 2005 rehost
 - Qualified to AC120-40B
 - Sought Full Part 60 Directive 2 Compliance
 - OEM Model/Data not available

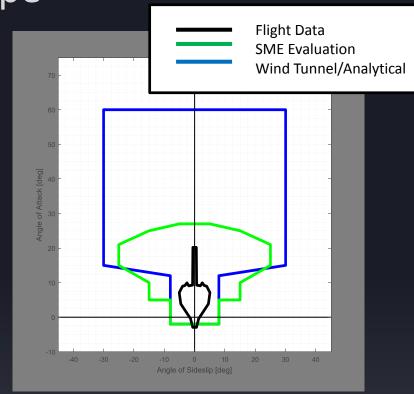
Example- ABX 767-200

- Model basis
 - Static and dynamic wind-tunnel test data collected by Bihrle
 - Up to 60 degrees AOA and +/-30 Sideslip
 - CFD used to adjust for Reynolds number effects
- Model coded in C and hosted on external computer communicating with device via
 Ethernet

Example-ABX Air 767-200

- SME Evaluation
 - Former Boeing test-pilot with stall experience in 767
 - Maneuvers
 - Required -
 - Wings-Level and Turning Stalls
 - 2nd Segment Climb, Landing, Cruise
 - Cruise configuration at low and high altitude
 - Extra
 - Accelerated Stalls, Power On Stalls, Aggravated Inputs, Poor Recoveries

Example – ABX Air 767-200


- SME Feedback
 - Adjustments to incipient stall pitch stability
 - Adjustments to uncommanded roll magnitudes
 - Adjustments to buffet onset and trends
- Feedback and Evaluation Description was Included in SOC

Example – ABX Air 767-200

Updated Simulator Envelope

- Required
 - Flight Test
 - Analytical/Wind-Tunnel
- Extra
 - SME Evaluated

Success

- Analytical/empirical type-exemplar model applications
 - A300, A310, A320, A330, A340, B737-700/800, B737-300/400, B767-200, CL650, DC-9, G450, G6000, MD10-30
 - ATR-42, ATR-72, DHC-8-100/200/300, Q400,
 SAAB 340, SAAB 2000,

Success

- To date 35+ FFS qualified (FAA, GACA) for fullstall recovery training using non-OEM analytical/empirical type exemplar stall models
 - Represents over 10% of all <u>updated</u> devices qualified for full stall training per Directive 2

Take Away

- Sound Approach Proven
 - Non-OEM Analytical/empirical exemplar stall models have been successfully integrated and qualified for full-stall training

